Some Suns in L_1

B. BROSOWSKI, F. DEUTSCH, J. LAMBERT, AND P. D. MORRIS*

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802

Communicated by Oved Shisha

Received July 5, 1974

INTRODUCTION

In [1] we studied a certain class of "one parameter" Chebychev sets in normed spaces (viz. the *EU-regular Chebychev sets* defined below) and obtained necessary and sufficient conditions for these sets to be suns. We then showed that if T is any infinite compact metric space, then C(T) contains an (*EU*regular) Chebychev set that is not a sun. Dunham [4] had given the first example of a Chebychev set in a normed space that is not a sun. His example is a "one-parameter" family in C[0, 1]. (Such an example is implicit in an earlier paper of Dunham [3].)

In this paper it is our purpose to show that the situation in the spaces of type L_1 is quite different. Indeed, every EU-regular Chebychev set in an L_1 space is a sun.

We give some definitions. A set B in a normed space X is proximinal if every point of X has at least one best approximation in B. A set B in X is Chebychev if every point in X has exactly one best approximation in B. A set B in X is a sun if, whenever $x \in X$ and b in B is a best approximation to x, b is also a best approximation to $b + \lambda(x - b)$ for all $\lambda \ge 0$.

Let *I* denote an interval of one of the following forms: $(-\infty, a]$, [a, b], $[a, \infty)$, or $(-\infty, \infty)$. Let $M = \{F_c : c \in I\}$ be a curve contained in a normed space *X*. Then *M* is *E*-regular if: (i) $c_n \in I$ and $|c_n| \to \infty$ implies $||F_{c_n}|| \to \infty$; (ii) for any $x \in X$, $c \in I$, $c_n \in I$ with $c_n \to c$,

$$||F_c - x|| \leq \limsup ||F_{c_n} - x||.$$

Also, *M* is *U*-regular if: (iii) $x^*(F_c)$ is a monotone function of *c* for every $x^* \in \text{ext } S(X^*)$ (i.e., the set of extreme points of the unit ball, $S(X^*)$, of X^*); (iv) the linear span of $F_{c_1} - F_{c_2}$ is Chebychev whenever c_1 , c_2 are in *I*. Finally, *M* is *EU*-regular if it is both *E*-regular and *U*-regular.

* This author was partially supported by NSF Grant GP-40385.

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved.

SOME SUNS IN L_1 311

In [1, Proposition 1.3], it was proved that the curve M is proximinal if it is *E*-regular and is Chebychev if it is *EU*-regular and if the function $c \rightarrow F_c$ is one-to-one. It was also proved [1, Theorem 1.17] that an *EU*-regular Chebychev curve is a sun if and only if the function $c \rightarrow F_c$ is continuous.

The Theorem

In the sequel, (S, \mathcal{S}, μ) will denote a measure space and $L_1 = L_1(S, \mathcal{S}, \mu)$ will denote the space of all (equivalence classes of) integrable functions x on S with the norm

$$||x|| = \int_{\mathcal{S}} |x| d\mu.$$

We assume further that $L_1^* = L_{\infty}(S, \mathcal{S}, \mu)$. (This will be the case, e.g., if (S, \mathcal{S}, μ) is σ -finite.) A set $A \in \mathcal{S}$ is called an *atom* if $0 < \mu(A) < \infty$, and whenever $B \in \mathcal{S}$, $B \subset A$, it follows that $\mu(B) = 0$ or $\mu(B) = \mu(A)$. Note that the assumption that $L_1^* = L_{\infty}$ implies that any union of atoms is measurable. Recall that

$$\operatorname{ext} S(L_1^*) = \{ \sigma \in L_{\infty} : |\sigma| = 1 \text{ a.e. } \mu \}$$

LEMMA 1. Let $h \in L_1 \setminus \{0\}$, let \mathcal{C} denote the union of all atoms in \mathcal{S} , and let $\delta = \int_{S \setminus \mathcal{C}} |h| d\mu$. Then for each $\lambda \in [0, 1]$ there is a function σ on $S \setminus \mathcal{C}$ such that $|\sigma| = 1$ and

$$\int_{S\setminus C} h\sigma \ d\mu = \lambda\delta + (1-\lambda)(-\delta).$$

Proof. Let

$$u(E) = \int_E |h| d\mu, \quad E \subseteq S \setminus \mathcal{O}.$$

Then ν is a finite nonatomic measure, $\nu(\phi) = 0$, and $\nu(S \setminus \mathcal{A}) = \delta$. By a theorem of Liapunov [6] (see also [7]), the set { $\nu(E): E \subseteq S \setminus \mathcal{A}$ } is convex so, for each $\lambda \in [0, 1]$, there exists $E \subseteq S \setminus \mathcal{A}$ such that $\nu(E) = \lambda \delta$. Thus, setting

$$\sigma = \operatorname{sgn} h \text{ on } E$$

= -sgn h on (S\A)\E,

it follows that

$$\int_{S\setminus a} h\sigma \ d\mu = \int_E |h| \ d\mu - \int_{(S\setminus a)\setminus E} |h| \ d\mu = \lambda \delta - (1-\lambda) \ \delta.$$

LEMMA 2. Let $h \in L_1 \setminus \{0\}$: The following statements are equivalent.

(1) span{h} is Chebychev

(2) span{h} is "interpolating," i.e., there does not exist $x^* \in \text{ext } S(L_1^*)$ with $x^*(h) = 0$

(3) \mathscr{S} contains atoms and

$$\int_{S\setminus\mathcal{A}} |h| \, d\mu < \min \, \Big\{ \Big| \int_{\mathcal{A}} h\sigma \, d\mu \, \Big| \colon \sigma \in L_{\infty} \, , \, |\sigma| = 1 \Big\};$$

where \mathcal{A} is the union of all atoms in S.

Proof. The equivalence of (1) and (2) is a consequence of some results of Phelps [8, Theorem 1.8 and Lemma 2.4].

(2) \Rightarrow (3). If span{h} is Chebychev, then by a result of Dye [8, Theorem 2.5] \mathscr{S} must have atoms.

Let \mathcal{A} denote the union of all atoms in S, $\delta = \int_{S \setminus \mathcal{A}} |h| d\mu$, and

$$r = \min \left\{ \left| \int_{\mathcal{A}} h\sigma \ d\mu \right| : \sigma \in L_{\infty}, |\sigma| = 1 \right\}.$$

Suppose $r \leq \delta$. Then by Lemma 1, there is a function σ on $S \setminus \mathcal{A}$ such that $|\sigma| = 1$ and

$$\int_{S\setminus a} h\sigma \ d\mu = r.$$

Define σ on \mathcal{A} so that $|\sigma| = 1$ and

$$\int_{\alpha} h\sigma \, d\mu = -r$$

Then $\int_{S} h\sigma d\mu = 0$, and this contradicts the fact that span{h} is interpolating. Hence, $\delta < r$, and (3) holds.

(3) \Rightarrow (2). Assume (3) holds but (2) fails. Then there is a function β with $|\beta| = 1$ such that $\int_{S} h\beta d\mu = 0$. In particular,

$$\int_{S\setminus a} h\beta \ d\mu = -\int_{a} h\beta \ d\mu.$$

Thus,

$$\left|\int_{\alpha}h\beta d\mu\right| = \left|\int_{s\setminus\alpha}h\beta d\mu\right| \leq \int_{s\setminus\alpha}|h| d\mu,$$

which contradicts (3).

One interesting consequence of this result (although it is not pertinent to the present work) is that if span{h} is Chebychev in $L_1(S, \mathcal{S}, \mu)$, then span{h $|_{\mathcal{A}}$ } is Chebychev in $L_1(\mathcal{A}, \mathcal{S} \cap \mathcal{A}, \mu |_{\mathcal{A}})$, where \mathcal{A} is the union of all atoms in S.

LEMMA 3. Let M be a U-regular set in L_1 . Then any weakly convergent sequence from M converges in norm.

Proof. If S is purely atomic, the result is a consequence of the well-known fact that a sequence that converges weakly must actually converge in norm (see, e.g., [2, p. 295]). Let $F_{c_n} \in M$ and $F_{c_n} \to y$ weakly. Given any subsequence (n_i) of the natural numbers, let

$$h_i = F_{c_{n_i}} - F_{c_{n_{i+1}}}$$

Then span $\{h_i\}$ is a Chebychev subspace for each *i*. By Lemma 2

(*)
$$\int_{S\setminus a} |h_i| d\mu \leqslant \int_a |h_i| d\mu$$
, for each *i*,

where \mathcal{A} is the union of atoms in S. Since $h_i \to 0$ weakly, it follows that $h_i \mid_{\mathcal{A}} \to 0$ weakly (regarded as elements of $L_1(\mathcal{A}, \mathcal{S} \cap \mathcal{A}, \mu \mid_{\mathcal{A}})$). By the result stated at the beginning of the proof, $\int_{\mathcal{A}} \mid h_i \mid d\mu \to 0$. From the inequality (*), $\int_{S \setminus \mathcal{A}} \mid h_i \mid d\mu \to 0$, and hence, $||h_i|| = \int_S \mid h_i \mid d\mu \to 0$. That is,

$$\|F_{c_{n_i}}-F_{c_{n_{i+1}}}\|\to 0.$$

Since the subsequence (n_i) was arbitrary, (F_{c_n}) must be a Cauchy sequence, and hence, converges.

THEOREM. Every EU-regular Chebychev set in L_1 is a sun.

Proof. Let $M = \{F_c : c \in I\}$ be an *EU*-regular Chebychev set. If M is not a sun, then by [1, Theorem 1.17], the map $F_{(.)}$ is discontinuous. Thus, there is a $c_0 \in I$, a sequence (c_n) in I converging monotonically to c_0 , and an $\epsilon > 0$ such that

(*)
$$||F_{c_n} - F_{c_0}|| \ge \epsilon$$
, for every *n*.

We may assume $c_n \downarrow c_0$. For each $x^* \in \text{ext } S(L_1^*)$, $x^*(F_{c_n})$ is a bounded monotone sequence, and hence, converges. It follows that $x^*(F_{c_n})$ converges for every $x^* \in \text{co}(\text{ext } S(L_1^*))$. Now L_1^* is isometric with L_{∞} , which is isometric with C(T), for some compact extremally disconnected Hausdorff space T [2, p. 445.]. Hence, by a well-known result of Goodner [5], the unit ball of C(T), S(C(T)), is the norm closed convex hull of its extreme points. Therefore,

$$S(L_1^*) = \overline{\operatorname{co}}(\operatorname{ext} S(L_1^*)).$$

Let $K = \sup_n ||F_{c_n}||$.

Then $K < \infty$ by *E*-regularity. It follows by a standard argument that for every $x^* \in L_1^*$, $x^*(F_{e_k})$ converges. Thus, (F_{e_k}) is a weak Cauchy sequence. Since L_1 is weakly complete [2, p. 290], (F_{e_k}) converges weakly to some element of L_1 . By Lemma 3 and the fact that M is closed, $F_{e_k} \to F_e$ for some $c \in I$. By [1, Lemma 1.9], an *E*-regular curve has a closed graph and so $F_c = F_{e_k}$. But this contradicts (*).

PROBLEM. More generally, must every Chebychev curve in L_1 be a sun?

References

- 1. B. BROSOWSKI, F. DEUTSCH, J. LAMBERT, P. D. MORRIS, Chebychev sets which are not suns, *Math. Ann.* 212 (1974), 89–101.
- 2. N. DUNFORD AND J. SCHWARTZ, "Linear Operators," Part I, Interscience, New York, 1958.
- 3. C. B. DUNHAM, Characterizability and uniqueness in real Chebychev approximation, J. Approximation Theory 2 (1969), 374-383.
- 4. C. B. DUNHAM, Chebychev sets in C[0, 1] which are not suns, Canad. Math. Bull. 18 (1975), 35-37.
- 5. D. B. GOODNER, Projections in normed linear spaces, Trans. Amer. Math. Soc. 69 (1950), 89-108.
- 6. A. A. LIAPUNOV, On completely additive vector-functions, *Izv. Akad. Nauk SSSR* 4 (1940), 465–478.
- 7. J. LINDENSTRAUSS, A short proof of Liapunoff's convexity theorem, J. Math. Mech. 15 (1966), 971-972.
- R. R. PHELPS, Uniqueness of Hahn-Banach extensions and unique best approximations, Trans. Amer. Math. Soc. 95 (1960), 238-255.