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INTRODUCTION

In [1] we studied a certain class of “one parameter” Chebychev sets in
normed spaces (viz. the EU-regular Chebychev sets defined below)and obtained
necessary and sufficient conditions for these sets to be suns. We then showed
that if T is any infinite compact metric space, then C(T) contains an (EU-
regular) Chebychev set that is not a sun. Dunham [4] had given the first
example of a Chebychev set in a normed space that is not a sun. His example
is a ‘““one-parameter” family in C[0. 1]. (Such an example is implicit in an
earlier paper of Dunham [3].)

In this paper it is our purpose to show that the situation in the spaces of
type L, is quite different. Indeed, every EU-regular Chebychev set in an L,
space is a sun.

We give some definitions. A set B in a normed space X is proximinal
if every point of X has at least one best approximation in B. A set Bin X
is Chebychev if every point in X has exactly one best approximation in B.
A set Bin X is a sun if, whenever x € X and b in B is a best approximation
to x, b is also a best approximation to b + A(x — b) for all A = 0.

Let I denote an interval of one of the following forms: (—w, al, [a, b],
[a, o0), or (—o0, ). Let M = {F, : ¢ € I} be a curve contained in a normed
space X. Then M is E-regular if: (i) ¢, € I and | ¢, | — oo implies || F. [| = o0;
(ii) for any xe X, ce I, ¢, e I with ¢, — ¢,

|F, — x|| < limsup || F,, — x].

Also, M is U-regular if: (iii) x*(F,) is a monotone function of ¢ for every
x* e ext S(X*) (i.e., the set of extreme points of the unit ball, S(X*), of X*);
(iv) the linear span of F, — F. is Chebychev whenever ¢, , ¢, are in I
Finally, M is EU-regular if it is both E-regular and U-regular.

* This author was partially supported by NSF Grant GP-40385.

310
Copyright © 1976 by Academic Press, Inc.
All rights of reproduction in any form reserved.



SOME SUNS IN L, 31

In [1, Proposition 1.3], it was proved that the curve M is proximinal if
it is E-regular and is Chebycheyv if it is EU-regular and if the function ¢ — F,
is one-to-one. It was also proved [1, Theorem 1.17] that an EU-regular
Chebychev curve is a sun if and only if the function ¢ — F, is continuous.

THE THEOREM

In the sequel, (S, &, u) will denote a measure space and L; = L(S, &, p)
will denote the space of all (equivalence classes of) integrable functions x
on S with the norm

hxii= [ 1x] dp.

We assume further that L,* = L_(S, &%, n). (This will be the case, e.g., if
(S, &, p) is o-finite.) A set 4 €& is called an atom if 0 < u(4) < oo, and
whenever Be ¥, BC A, it follows that u(B) = 0 or u(B) = u(A). Note
that the assumption that L,* = L, implies that any union of atoms is
measurable. Recall that

extS(Li*) ={vel,:|o|=1ae u}

LemMa 1. Let he L\{0}, let CI denote the union of all atoms in &, and
let 8 = [s\7 | h|du. Then for each X< |0, 1] there is a function o on S\(Y
such that | o} = 1 and

J' ho du = A8 = (1 — X)(—39).
s\

Proof. Let

WE) = fE |h|du, ECS\A

Then v is a finite nonatomic measure, ¥(¢) = 0, and v(S\(¥) = 5. By a
theorem of Liapunov [6] (see also [7]), the set {}(E): E C S\(¥} is convex so,
for each A €0, 1], there exists £ C S\(¥ such that »(E) = AS. Thus, setting
oc=sgnhonE
= —sgn & on (S\()\E,
it follows that

ho du = hldu — hldu = A6 — —_ .
fmo n fE{ | du fmwf | du 1—ns
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LemMa 2. Let h e L,)\{0}: The following statements are equivalent.

(1) span{h} is Chebychev

(2) span{h} is “interpolating,” i.e., there does not exist x* ¢ ext S(L;*)
with x*(h) = 0

(3) & contains atoms and

fmlhldﬂ<min glfahadp,':o-eLm,[o[zl;

where (% is the union of all atoms in S.

Proof. The equivalence of (1) and (2) is a consequence of some results
of Phelps [8, Theorem 1.8 and Lemma 2.4].

(2) = (3). If span{#}is Chebychev, then by a result of Dye [8, Theorem
2.5] < must have atoms.

Let 7 denote the union of all atoms in S, 8 = [5\¢ | /| du, and
r = min ;H hod,u.,:crELw,IO‘[ = It.
a

Suppose r < 8. Then by Lemma 1, there is a function o on S\(Z such that
lo| =1and

hody =r.
s\a

Define o on ¢ so that | o | = 1 and

fa ho dp = —r.

Then [s ho du = 0, and this contradicts the fact that span{#} is interpolating.
Hence, 8§ < r, and (3) holds.

(3) = (2). Assume (3) holds but (2) fails. Then there is a function 8
with | 8| = 1 such that [s #8 du = 0. In particular,

fS\az hBdp = — fa hB dpu.
Thus,
[ ngau|=|[ roau| <[  1h1dw,

which contradicts (3). |
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One interesting consequence of this result (although it is not pertinent to
the present work) is that if span{h} is Chebychev in L (S, &, w), then spant{h |}
is Chebychev in Ly(0l, & N\ (L, u |n), where (¥ is the union of all atoms in S.

LemMA 3. Let M be a U-regular set in L, . Then any weakly convergent
sequence from M converges in norm.

Proof. 1If S'is purely atomic, the result is a consequence of the well-known
fact that a sequence that converges weakly must actually converge in norm
(see, e.g., [2, p. 295]). Let F, e MandF, —y weakly. Given any subsequence
(n,) of the natural numbers, let

h i = F Cn. -

Crgpy "

Then span{#;} is a Chebychev subspace for each i. By Lemma 2

* f ]hildy,<J | h;| dp,  for each i,
s\a o

where ¢7 is the union of atoms in S. Since h; — 0 weakly, it follows that
h; |@ — 0 weakly (regarded as elements of L,((¥, & N O, u |z)). By the result
stated at the beginning of the proof, [ | #; | du — 0. From the inequality (*),
fs\e | ;| du — 0, and hence, || ;|| = [s | #; | du — 0. That is,

H Fc"i - Fc,,”_1 ” — 0.

Since the subsequence (n;) was arbitrary, (F, ) must be a Cauchy sequence,
and hence, converges. |

THEOREM. FEvery EU-regular Chebychev set in L, is a sun.

Proof. let M = {F,: cel} be an EU-regular Chebychev set. If M is not
a sun, then by [1, Theorem 1.17], the map F{,) is discontinuous. Thus, there
is a ¢yel, a sequence (c,) in I converging monotonically to ¢,, and an
€ > 0 such that

* |F, —F,ll=¢€  foreveryn.

We may assume ¢, | ¢,. For each x* e extS(L,*), x*(F,) is a bounded
monotone sequence, and hence, converges. It follows that x"*(Fc ) converges
for every x* € co(ext S(L,*)). Now L,* is isometric with L , which is iso-
metric with C(T), for some compact extremally disconnected Hausdorff
space T [2, p. 445.]. Hence, by a well-known result of Goodner [5], the unit
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ball of C(T), S(C(T)), is the norm closed convex hull of its extreme points,
Therefore,

S(L,*¥) = colext S(L¥)).

Let K == sup,, || F, Il
Then K < o« by E-regularity. It follows by a standard argument that for
every x*e L *, x*(Fck) converges. Thus, (F, ) is a weak Cauchy sequence.
Since L, is weakly complete [2, p. 290], (F,) converges weakly to some
element of L; . By Lemma 3 and the fact that M is closed, F, — F, for some
cel By [1, Lemma 1.9], an E-regular curve has a closed graph and so
F. =F, . But this contradicts (*). [l

ProBLEM. More generally, must every Chebychev curve in L; be a sun?
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